Formulation of Biodegradable Polymeric Nanoparticles for Cancer Therapy
Main Article Content
Abstract
therapy is always crucial. Modern cancer treatment methods require innovative approaches as a result. These days, there is a lot of interest in nanotechnology because of its potential uses as medication delivery systems, theragnostic tools, diagnostic tools, and contrasting agents. The biocompatible and biodegradable polymers that make up nanoparticles (NPs) enhance the pharmacokinetic and pharmacodynamic qualities of medications, lessen adverse effects, increase stability, extend the duration of drug release, and decrease the frequency of dose. The FDA has approved poly (lactic-co-glycolic acid) (PLGA) as a synthetic polymer that can be used to create NPs that are specifically targeted to a particular place for the safe and efficient delivery of medication. Numerous cancer therapies, such as photodynamic therapy, gene therapy, tumor-targeted medication delivery, and hyperthermia, can be implemented with PLGA-based nanoparticles. The preparation, characterization, and encapsulation of chemotherapeutic drugs are covered in this article along with the impact of the physicochemical properties of PLGA-based nanoparticles and how these aspects can be utilized through different preparation techniques for drug loading, biodistribution, target specificity, and cancer therapy.
Article Details
References
Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021, 71, 209–249.
Lin, A.; Giuliano, C.J.; Palladino, A.; John, K.M.; Abramowicz, C.; Yuan, M.L.; Sausville, E.L.; Lukow, D.A.; Liu, L.; Chait, A.R.; et al. Off-target Toxicity is A Common Mechanism of Action of Cancer Drugs Undergoing Clinical Trials. Sci. Transl. Med. 2019, 11, 509.
Zahavi, D.; Weiner, L. Monoclonal antibodies in cancer therapy. Antibodies 2020, 9, 34.
Kafil V, Omidi Y. Cytotoxic impacts of linear and branched polyethylenimine nanostructures in a431 cells. Bioimpacts 2011; 1: 23-30. doi:10.5681/bi.2011.004
Omidi Y, Barar J, Heidari HR, Ahmadian S, Yazdi HA, Akhtar S. Microarray analysis of the toxicogenomics and the genotoxic potential of a cationic lipid-based gene delivery nanosystem in human alveolar epithelial a549 cells. ToxicolMech Methods 2008; 18: 369-78. doi:10.1080/15376510801891286
Duncan R. Polymer therapeutics as nanomedicines: new perspectives. CurrOpinBiotechnol 2011; 22: 492-501. doi:10.1016/j.copbio.2011.05.507
Khosroushahi AY, Naderi-Manesh H, Yeganeh H, Barar J, Omidi Y. Novel water-soluble polyurethane nanomicelles for cancer chemotherapy: physicochemical characterization and cellular activities. J Nanobiotechnology 2012; 10: 2. doi:10.1186/1477-3155-10-2
Jackanicz TM, Nash HA, Wise DL, Gregory JB. Polylactic acid as a biodegradable carrier for contraceptive steroids. Contraception 1973; 8: 227-34. doi:10.1016/0010-7824(73)90033-4
Mansoori, B., Mohammadi, A., Davudian, S., Shirjang, S., and Baradaran, B. (2017). The different mechanisms of cancer drug resistance: a brief review. Adv. Pharmaceut. Bull. 7, 339.
Wicki, A., Witzigmann, D., Balasubramanian, V., and Huwyler, J. (2015). Nanomedicine in cancer therapy: challenges, opportunities, and clinical applications. J. Contr. Release 200, 138–157.
Villemin, E.; Ong, Y. C.; Thomas, C. M.; Gasser, G. Polymer Encapsulation of Ruthenium Complexes for Biological and Medicinal Applications. Nat. Rev. Chem. 2019, 3 (4), 261–282.
Panyam, J.; Labhasetwar, V. Biodegradable Nanoparticles for Drug and Gene Delivery to Cells and Tissue. Adv. Drug Deliv. Rev. 2003, 55 (3), 329–347.
Carrasquillo, K. G.; Stanley, A. M.; Aponte-Carro, J. C.; De Jésus, P.; Costantino, H. R.; Bosques, C. J.; Griebenow, K. Non-Aqueous Encapsulation of Excipient-Stabilized Spray-Freeze Dried BSA into Poly (Lactide-Co-Glycolide) Microspheres Results in Release of Native Protein. J. Control. Release 2001, 76 (3), 199–208.
Chan JM, Zhang L, Yuet KP, Liao G, Rhee J-W, et al. 2009. PLGA–lecithin–PEG core–shell nanoparticles for controlled drug delivery. Biomaterials 30: 1627–34
Kumari, A.; Yadav, S. K.; Yadav, S. C. Biodegradable Polymeric Nanoparticles Based Drug Delivery Systems. Colloids surfaces B biointerfaces 2010, 75 (1), 1–18.
Feng, C.; Yuan, X.; Chu, K.; Zhang, H.; Ji, W.; Rui, M. Preparation and Optimization of Poly (Lactic Acid) Nanoparticles Loaded with Fisetin to Improve Anti-Cancer Therapy. Int. J. Biol. Macromol. 2019, 125, 700–710.
A New Absorbable Suture—Frazza—1971—Journal of Biomedical Materials Research—Wiley Online Library. Available online: https://onlinelibrary.wiley.com/doi/abs/10.1002/jbm.820050207 (accessed on 28 May 2021).
Rampino A, Borgogna M, Blasi P, Bellich B, Cesàro A. 2013. Chitosan nanoparticles: Preparation, size evolution and stability. Int. J. Pharm 455: 219–28
Santoro M, Tatara AM, Mikos AG. 2014. Gelatin carriers for drug and cell delivery in tissue engineering. J. Control. Release 0: 210–8
Lugoloobi, I.; Maniriho, H.; Jia, L.; Namulinda, T.; Shi, X.; Zhao, Y. Cellulose nanocrystals in cancer diagnostics and treatment. J. Control. Release 2021, 336, 207–232.
Hudson D, Margaritis A. 2014. Biopolymer nanoparticle production for controlled release of biopharmaceuticals. Crit. Rev. Biotechnol 34: 161–79
Chen, F.; Huang, G.; Huang, H. Preparation and application of dextran and its derivatives as carriers. Int. J. Biol. Macromol. 2020, 145, 827–834.
Danhier F, Preat V (2015) Strategies to improve the EPR effect for the delivery of anti-cancer nanomedicines. Cancer Cell Microenviron2:e808
Ramazani F et al (2016) Strategies for encapsulation of small hydrophilic and amphiphilic drugs in PLGA microspheres: state-of-the-art and challenges. Int J Pharm 499(1-2):358–367
Kim BG, Kang IJ. Evaluation of the effects of biodegradable nanoparticles on a vaccine delivery system using AFM, SEM, and TEM. Ultramicroscopy 108: 1168-1173, 2008.
Shao J, Xie H, Huang H, Li Z, Sun Z, et al. 2016. Biodegradable black phosphorus-based nanospheres for in vivo photothermal cancer therapy. Nat. Commun 7: 12967.
Jose S, Sowmya S, Cinu TA, Aleykutty NA, Thomas S, Souto EB. Surface modified plga nanoparticles for brain targeting of Bacoside-A. Eur J Pharm Sci 63: 29-35, 2014.
Plummer R, Wilson RH, Calvert H, Boddy AV, Griffin M, et al. 2011. A Phase I clinical study of cisplatin-incorporated polymeric micelles (NC-6004) in patients with solid tumours. Br. J. Cancer 104: 593–8
Hamaguchi T, Kato K, Yasui H, Morizane C, Ikeda M, et al. 2007. A phase I and pharmacokinetic study of NK105, a paclitaxel-incorporating micellar nanoparticle formulation. Br. J. Cancer 97: 170–76
Hrkach J, Von Hoff D, Ali MM, Andrianova E, Auer J, et al. 2012. Preclinical development and clinical translation of a PSMA-targeted docetaxel nanoparticle with a differentiated pharmacological profile. Sci. Transl. Med 4: 12839–39
Suk, J.S.; Xu, Q.; Kim, N.; Hanes, J.; Ensign, L.M. PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Adv. Drug Deliv. Rev. 2016, 99, 28–51.